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Abstract

In this paper, combined forced and free convection is studied in a vertical rectangular duct with a prescribed uniform wall heat

flux (H2 boundary condition). A different heat flux value for each plane wall is considered; the condition of a uniform wall heat flux

throughout the duct results as a special case. The local momentum and energy balance equations are written in a dimensionless form

and solved numerically, by means of a Galerkin finite element method. The numerical solution gives the dimensionless velocity and

temperature distributions, together with the values of the Fanning friction factor, of the Nusselt number, of the momentum flux

correction factor and of the kinetic energy correction factor. These dimensionless parameters are reported as functions of the aspect

ratio and of the ratio between the Grashof number, Gr, and the Reynolds number, Re. The threshold values of Gr=Re for the onset
of flow reversal are evaluated.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The investigation of convection in non-circular ducts

with a prescribed wall heating requires distinct bound-

ary conditions, namely the H1 boundary condition and

the H2 boundary condition. As is well known, the for-

mer corresponds to an axially uniform wall heat flux
with a peripherally uniform wall temperature, while the

latter corresponds to an axially and peripherally uni-

form wall heat flux. Sometimes, the concept of H2

boundary condition is extended, i.e. the wall heat flux is

assumed to be axially uniform but peripherally piecewise

uniform. Therefore, in the case of a rectangular duct, the

H2 boundary conditions imply that the heat flux as-

sumes either the same value on all the walls of the duct
or a different value on each wall. Boundary conditions

of kind H2 are good models for the thermal analysis of

heating/cooling devices where no important axial change
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of the wall heat flux occurs, and the thermal conduc-

tivity of the wall is not very high. For instance, appli-

cations can be found in solar collector design and

thermal control of electronic equipments.

In the literature, many authors have analysed the

forced or mixed convection in rectangular ducts; most of

the papers on this subject have been reviewed by Hart-
nett and Kostic (1989). In the last decade, some authors

have studied the combined forced and free convection in

rectangular ducts by employing numerical or experi-

mental methods. In particular, the occurrence of flow

reversal in a vertical heated channel has been studied

experimentally through flow visualization (Gau et al.,

1992). Cheng et al. (1995) have studied numerically the

inlet region of a vertical rectangular duct with one wall
kept at a higher temperature and the others at a lower

temperature. Recently, the study has been extended to

the case of two or more walls kept at a higher temper-

ature (Cheng et al., 2000). Lee (1999) has utilized the

velocity–vorticity formulation to solve numerically the

balance equations in the case of natural convection in a

vertical rectangular duct with three adiabatic walls and

the last one isothermal or subjected to a uniform heat
flux. In Hwang et al. (2001), the stream function method
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Nomenclature

a, b lengths of the rectangle sides

c1, c2, c3, c4 real coefficients, defined by Eq. (4)

D 2ab=ðaþ bÞ, hydraulic diameter

f Fanning friction factor, defined by Eq. (30)

g magnitude of the gravitational acceleration

Gr Grashof number, defined in Eq. (20)

ðGr=ReÞ0 threshold value of Gr=Re for the onset of

flow reversal
h average convection coefficient, defined in Eq.

(32)

k thermal conductivity

Kd momentum flux correction factor, defined by

Eq. (36)

Ke kinetic energy correction factor, defined by

Eq. (37)

Nu Nusselt number, defined in Eq. (32)
Nu� modified Nusselt number, defined by Eq. (39)

p pressure

P difference between the pressure and the hy-

drostatic pressure

q0 wall heat flux per unit area
�qqw average wall heat flux per unit area
�qq�w modified average wall heat flux per unit area

Re Reynolds number, defined in Eq. (20)
t dimensionless temperature, defined in Eq.

(20)

tb dimensionless bulk temperature, defined by

Eq. (35)

�ttw dimensionless average wall temperature, de-

fined by Eq. (34)

T temperature

Tb bulk temperature in a duct section

T0 mean temperature in a duct section, defined

by Eq. (6)

T w average wall temperature

T
�
w modified average wall temperature, defined

by Eq. (38)

u U=U0, dimensionless velocity

U Z-component of the fluid velocity

U0 mean fluid velocity in a duct section, defined

by Eq. (10)

x, y dimensionless coordinates, defined in Eq. (20)

X , Y , Z rectangular coordinates

Greeks

a thermal diffusivity

b volumetric coefficient of thermal expansion

DT q0D=k, reference temperature difference

k dimensionless parameter, defined in Eq. (20)

g dimensionless parameter, defined in Eq. (20)

l dynamic viscosity
m kinematic viscosity

. mass density

.0 mass density for T ¼ T0
r b=a, aspect ratio
�ssw average wall shear stress, defined by Eq. (29)
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has been employed to solve numerically the governing

equations for mixed convection in a horizontal square

duct or in a horizontal circular tube. Moreover, some

analytical solutions for laminar convection in vertical

rectangular ducts are available in the recent literature. In

particular, the free convection regime has been studied

by Mc Bain (1999), for a duct with two isothermal and

two adiabatic walls. On the other hand, forced convec-
tion has been studied by Spiga and Morini (1996) with

reference to the eight H2 boundary conditions defined

by Gao and Hartnett (1993). Two analytical solutions

for mixed convection flow in a vertical rectangular duct

have been recently presented by Barletta (2001, 2002).

Barletta (2001) has considered a class of boundary

conditions such that at least one wall of the duct is kept

isothermal. On the other hand, Barletta (2002) has
analysed the H1 boundary condition.

The aim of the present paper is to study the fully

developed mixed convection in a vertical rectangular

duct, with H2 boundary conditions. In the mathematical

model, it will be assumed that the prescribed heat flux

has a different value on each wall of the duct. In the

examples, the case of a rectangular duct with an aspect
ratio r strictly less than 1 will be discussed by consid-

ering the same value of the heat flux on all the walls of

the duct, while the case of a square duct ðr ¼ 1Þ will be
discussed for all the eight H2 boundary conditions de-

fined by Gao and Hartnett (1993). The momentum and

energy balance equations will be written in a dimen-

sionless form and then solved numerically by means of a

Galerkin finite element method. To implement the nu-
merical code, the software package FlexPDE (� PDE-

Solutions, Inc.) will be used. The solution will be

compared with those available in the literature for the

forced convection regime, in order to check the reli-

ability and the precision of the numerical code.
2. Mathematical model

Let us consider a Newtonian fluid which flows stea-

dily in a vertical duct with an infinite length and a

rectangular cross-section. A drawing of the duct section

and of the chosen coordinate axes ðX ; Y Þ is reported in

Fig. 1. Let us assume that the flow is laminar and par-

allel, so that only the Z-component U of the velocity
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Fig. 1. Drawing of the duct section and of the thermal boundary

conditions.

Table 1

Values of c1, c2, c3 and c4 for the eight H2 thermal boundary condi-

tions defined by Gao and Hartnett (1993)

c1 c2 c3 c4

4 1 1 1 1

3L 1 1 0 1

3S 1 1 1 0

2L 0 1 0 1

2S 1 0 1 0

2C 1 1 0 0

1L 0 1 0 0

1S 1 0 0 0
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vector U is non-zero. The thermal conductivity k, the
thermal diffusivity a and the dynamic viscosity l of the

fluid are treated as constants. The effect of viscous dis-

sipation in the fluid is neglected, and the Boussinesq

approximation is employed. Since this approximation

implies that the velocity field is solenoidal, one has
oU=oZ ¼ 0, i.e. U ¼ UðX ; Y Þ. On account of the above

assumptions, the momentum balance equation and the

energy balance equation yield

oP
oX

¼ 0;
oP
oY

¼ 0; ð1Þ

.0gbðT � T0Þ �
oP
oZ

þ l
o2U
oX 2

�
þ o2U

oY 2

�
¼ 0; ð2Þ

U
oT
oZ

¼ a
o2T
oX 2

�
þ o2T
oY 2

þ o2T
oZ2

�
; ð3Þ

where P ¼ p þ .0gZ is the difference between the pres-

sure and the hydrostatic pressure. As a consequence of

Eq. (1), P depends only on Z. The thermal boundary
conditions, described also in Fig. 1, can be written in the

form

� k
oT
oX

����
X¼0

¼ c1q0; �k
oT
oY

����
Y¼0

¼ c2q0;

k
oT
oX

����
X¼a

¼ c3q0; k
oT
oY

����
Y¼b

¼ c4q0;

ð4Þ

where c1, c2, c3, c4 are arbitrary real coefficients and q0 is
a prescribed wall heat flux per unit area. If c1 ¼ c2 ¼
c3 ¼ c4 ¼ 1, the duct is subjected to a uniform heat flux

q0 on all the walls. In this case, if q0 is positive the duct is
heated. By employing Eq. (4), one can obtain the eight

H2 boundary conditions, usually denoted as 4, 3L, 3S,

2L, 2S, 2C, 1L and 1S, defined by Gao and Hartnett

(1993). The values of the coefficients c1, c2, c3, c4 which
correspond to these eight cases are reported in Table 1.

The reference temperature T0 must be chosen so that the

linear equation of state

. ¼ .0½1� bðT � T0Þ� ð5Þ
is satisfied with the highest accuracy. Barletta and

Zanchini (1999) have shown that the best choice of T0 is
the mean fluid temperature in a cross-section, namely

T0 ¼
1

ab

Z a

0

dX
Z b

0

dY T ðX ; Y ; ZÞ: ð6Þ

By differentiating Eq. (2) with respect to Z, one obtains

oT
oZ

¼ dT0
dZ

þ 1

.0gb
d2P
dZ2

: ð7Þ

Eq. (7) implies that oT =oZ depends only on Z. By dif-

ferentiating Eq. (6) with respect to Z, one obtains

dT0
dZ

¼ 1

ab

Z a

0

dX
Z b

0

dY
oT
oZ

¼ oT
oZ

: ð8Þ

Eqs. (7) and (8) imply that d2P=dZ2 ¼ 0, i.e. that dP=dZ
is a constant. Eq. (3) can be rewritten as

U
dT0
dZ

¼ a
o2T
oX 2

�
þ o2T
oY 2

þ d2T0
dZ2

�
: ð9Þ

The mean velocity U0 in a duct cross-section is defined

by the relation

U0 ¼
1

ab

Z a

0

dX
Z b

0

dY UðX ; Y Þ: ð10Þ

By integrating Eq. (9) with respect to X and Y in a duct

cross-section, and by taking into account Eq. (10) and

the boundary conditions (4), one obtains

U0

dT0
dZ

� a
d2T0
dZ2

¼ aq0
kab

½ðc1 þ c3Þbþ ðc2 þ c4Þa�: ð11Þ

By introducing the hydraulic diameter D ¼ 2ab=ðaþ bÞ
and the mean value of the wall heat flux �qqw, defined by

�qqw ¼ q0
ðc1 þ c3Þbþ ðc2 þ c4Þa

2ðaþ bÞ ; ð12Þ

one can rewrite Eq. (11) as

U0

dT0
dZ

� a
d2T0
dZ2

¼ 4a�qqw
kD

: ð13Þ

Since oT=oZ is independent of X and Y , by differenti-
ating Eq. (9) with respect to Z one obtains

U
d2T0
dZ2

¼ a
d3T0
dZ3

: ð14Þ
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Moreover, by differentiating Eq. (13) with respect to Z
one is led to the equation

U0

d2T0
dZ2

¼ a
d3T0
dZ3

: ð15Þ

A comparison between Eqs. (14) and (15) yields

ðU � U0Þ
d2T0
dZ2

¼ 0: ð16Þ

Since U � U0 cannot vanish because U0 6¼ 0 and the

velocity is zero at the duct walls, one reaches the con-

clusion

d2T0
dZ2

¼ 0: ð17Þ

Eqs. (13) and (17) yield

dT0
dZ

¼ 4a�qqw
kDU0

: ð18Þ

By substituting Eqs. (17) and (18) into Eq. (9), one ob-

tains

o2T
oX 2

þ o2T
oY 2

¼ 4�qqw
kDU0

U : ð19Þ

Let us define the following dimensionless variables:

x ¼ X
a
; y ¼ Y

a
; r ¼ b

a
; u ¼ U

U0

;

g ¼ �qqw
q0

¼ ðc1 þ c3Þrþ c2 þ c4
2ð1þ rÞ ; t ¼ T � T0

DT
;

Re ¼ U0D
m

; Gr ¼ gbDTD3

m2
; k ¼ � a2

lU0

dP
dZ

;

ð20Þ

where the reference temperature difference DT is given

by

DT ¼ q0D
k

: ð21Þ

It will be assumed, without loss of generality, that the

parameter g is always positive, so that �qqw and q0 have

the same sign.

The ratio between the Reynolds number and the
Grashof number is

Gr
Re

¼ gbDTD2

mU0

: ð22Þ

Since oT=oZ ¼ dT0=dZ, then t ¼ tðx; yÞ. On account of

Eqs. (20) and (21), Eqs. (2) and (19) can be written in the
dimensionless form

o2u
ox2

þ o2u
oy2

þ Gr
Re

ð1þ rÞ2

4r2
t þ k ¼ 0; ð23Þ

o2t
ox2

þ o2t
oy2

¼ ð1þ rÞ2

r2
gu: ð24Þ
The boundary conditions for the dimensionless velocity

distribution u are as follows:

uð0; yÞ ¼ uð1; yÞ ¼ uðx; 0Þ ¼ uðx; rÞ ¼ 0: ð25Þ

By employing Eqs. (20) and (21), one can write the

thermal boundary conditions (4) in the dimensionless

form

ot
ox

����
x¼0

¼ � 1þ r
2r

c1;
ot
oy

����
y¼0

¼ � 1þ r
2r

c2;

ot
ox

����
x¼1

¼ 1þ r
2r

c3;
ot
oy

����
y¼r

¼ 1þ r
2r

c4:

ð26Þ

On account of Eq. (10), one can obtain the following

constraint for the velocity distribution u:Z 1

0

dx
Z r

0

dy uðx; yÞ ¼ r: ð27Þ

Moreover, Eq. (6) yields the following constraint for the

temperature distribution t:Z 1

0

dx
Z r

0

dy tðx; yÞ ¼ 0: ð28Þ

Eqs. (23)–(28) show that the dimensionless fields uðx; yÞ
and tðx; yÞ, as well as the dimensionless parameter k,
depend only on the prescribed values of r, c1, c2, c3, c4
and Gr=Re. As a consequence, for fixed values of r, c1,
c2, c3, c4 and Gr=Re, the fields uðx; yÞ, tðx; yÞ and the
parameter k obtained for heated duct ðq0 > 0Þ and up-

ward flow ðU0 > 0Þ coincide with those obtained for

cooled duct ðq0 < 0Þ and downward flow ðU0 < 0Þ.
Moreover, the fields uðx; yÞ, tðx; yÞ and the parameter k
obtained for heated duct ðq0 > 0Þ and downward flow

ðU0 < 0Þ coincide with those obtained for cooled duct

ðq0 < 0Þ and upward flow ðU0 > 0Þ. As it will be shown

in Sections 3 and 4, for negative values of the ratio
Gr=Re, the flow-reversal phenomenon may occur. As is

well known, this phenomenon corresponds to negative

local values of u, i.e. to a local velocity with a direction

opposite to that of the mean flow. For instance, negative

values of Gr=Re can correspond to q0 < 0 and U0 > 0. In

this case, if one considers the boundary condition 4 and

if jGr=Rej exceeds a threshold value, the fluid density

next to the boundary becomes much higher than the
mean fluid density and local downward flow may occur

in the neighbourhood of the boundary.

The average wall shear stress is given by

�ssw ¼ l
2ðaþ bÞ

Z b

0

dY
oU
oX

����
X¼0

�
�
Z b

0

dY
oU
oX

����
X¼a

þ
Z a

0

dX
oU
oY

����
Y¼0

�
Z a

0

dX
oU
oY

����
Y¼b

�
: ð29Þ

On account of Eqs. (20) and (29), one can define the

Fanning friction factor as
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f ¼ 2�ssw
.0U

2
0

¼ 2r

ð1þ rÞ2Re

Z r

0

dy
ou
ox

����
x¼0

"
�

Z r

0

dy
ou
ox

����
x¼1

þ
Z 1

0

dx
ou
oy

����
y¼0

�
Z 1

0

dx
ou
oy

����
y¼r

#
: ð30Þ

It can be easily shown that, as a consequence of Eqs.

(23), (28) and (30), the parameters f and k are related

through the expression

f Re ¼ 2r2k

ð1þ rÞ2
: ð31Þ

The mean Nusselt number in a duct cross-section can be

defined by the relation

Nu ¼ hD
k

¼ �qqwD

kðT w � TbÞ
; ð32Þ

where h is the average convection coefficient, �qqw is the

average wall heat flux, defined by Eq. (12), T w is the
average wall temperature in a duct section and Tb is

the bulk temperature. By introducing the dimensionless

quantities defined by Eqs. (20) and (21) into Eq. (32), one

obtains

Nu ¼ g
�ttw � tb

; ð33Þ

where �ttw is the mean value of the dimensionless wall

temperature, namely

�ttw ¼ 1

2ð1þ rÞ

Z 1

0

dx tðx; 0Þ
�

þ
Z r

0

dy tð1; yÞ

þ
Z 1

0

dx tðx; rÞ þ
Z r

0

dy tð0; yÞ
�

ð34Þ

and tb is the dimensionless bulk temperature, namely

tb ¼
1

r

Z 1

0

dx
Z r

0

dy tu: ð35Þ
Table 2

Comparison between the values of f Re and of Nu available in the literature

r Present paper Shah and L

f Re Nu f Re

1/10 21.1689 2.9061 21.16888

1/9 20.9039 2.9065 20.90385

1/8 20.5847 2.9074 20.58464

1/7 20.1931 2.9092 20.19310

1/6 19.7022 2.9126 19.70220

1/5 19.0705 2.9192 19.07050

1/4 18.2328 2.9326 18.23278

1/3 17.0897 2.9608 17.08967

1/2 15.5481 3.0192 15.54806

1 14.2271 3.0874 14.22708
Finally, the momentum flux correction factor and the

kinetic energy correction factor (Shah and London,

1978) are given by

Kd ¼
1

ab

Z a

0

dX
Z b

0

dY
U
U0

� �2

¼ 1

r

Z 1

0

dx
Z r

0

dy u2;

ð36Þ

Ke ¼
1

ab

Z a

0

dX
Z b

0

dY
U
U0

� �3

¼ 1

r

Z 1

0

dx
Z r

0

dy u3:

ð37Þ
3. Boundary condition H2 of kind 4: Fanning friction

factor and Nusselt number

The momentum and energy balance equations (23)

and (24), together with the boundary conditions (25),

(26) and the constraints (27), (28), have been solved

numerically for given values of the parameters r, c1, c2,
c3, c4 and Gr=Re. The software package FlexPDE Ver-
sion 3.01 (� PDESolutions Inc.) has been employed in

order to build the computational grid, to map Eqs. (23)–

(28) into a linear system of algebraic equations and to

solve this system. This software solves partial differential

equations by utilizing a Galerkin finite element method.

The spatial domain under assumption, i.e. the rectangle

½0; 1� � ½0; r�, is divided into triangular elements and the

grid is iteratively refined until a prescribed value of the
accuracy parameter ‘‘errlim’’ defined by the software

is reached. The numerical solutions have been checked

in order to obtain values of Nu, f Re, Kd and Ke inde-

pendent of the grid as well as of the value of the accu-

racy parameter.

In this section, the boundary condition H2 of kind 4

is considered ðc1 ¼ c2 ¼ c3 ¼ c4 ¼ 1Þ. Three different

examples, given by three different values of the aspect
ratio r, are discussed: r ¼ 1, r ¼ 0:5 and r ¼ 0:2.

Table 2 refers to Gr=Re ¼ 0, i.e. to forced convection,

and reports a comparison between the values of the
and those obtained in the present paper, for Gr=Re ¼ 0

ondon (1978) Spiga and Morini (1996)

Nu Nu

2.95 2.907

2.94 –

2.94 2.909

2.94 –

2.93 –

2.93 2.922

2.94 2.935

2.97 2.964

3.02 3.022

3.091 3.091



Table 3

Values of f Re, Nu, Kd and Ke for a square duct ðr ¼ 1Þ, for the

boundary condition H2 of kind 4

Gr=Re f Re Nu Kd Ke

)200 3.617 2.545 1.789 3.785

)100 9.085 2.743 1.547 2.795

0 14.23 3.087 1.378 2.154

100 18.67 3.423 1.273 1.778

200 22.82 3.630 1.204 1.550

300 25.70 4.156 1.171 1.449

400 31.34 3.794 1.138 1.361

500 36.26 3.763 1.139 1.378

600 31.19 5.763 1.138 1.359
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Fanning friction factor and of the Nusselt number ob-

tained in the present paper and those reported by Shah

and London (1978) and by Spiga and Morini (1996).

The values presented in Table 2 refer to several aspect
ratios. The comparison reveals a very good agreement

between the values of the friction factor obtained in the

present paper and those presented by Shah and London

(1978), while the values of the Nusselt number obtained

in the present paper slightly differ from those reported

by Shah and London (1978). However, the agreement

with the values of the Nusselt number obtained analyt-

ically by Spiga and Morini (1996) is very good, since the
first three digits are coincident. Indeed, the results re-

ported by Shah and London (1978) for the Fanning

friction factor were obtained by solving the balance
x
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Fig. 2. Contour plots of uðx; yÞ (upper frame) and tðx; yÞ (lower frame)
equations analytically, while those for the Nusselt

number were obtained numerically.
0.8 1.0

a

a

a

a
a

a

a
a

a

a

a

b

i

j

u(x,y)
max  3.22
q :  3.20
p :  3.00
o :  2.80
n :  2.60
m :  2.40
l :  2.20
k :  2.00
j :  1.80
i :  1.60
h :  1.40
g :  1.20
f :  1.00
e :  0.80
d :  0.60
c :  0.40
b :  0.20
a :  0.00
min -0.15

0.8 1.0

g

k

k

l

l

m

m

n

n

o

o

t(x,y)
max  0.43
p :  0.40
o :  0.35
n :  0.30
m :  0.25
l :  0.20
k :  0.15
j :  0.10
i :  0.05
h :  0.00
g : -0.05
f : -0.10
e : -0.15
d : -0.20
c : -0.25
b : -0.30
a : -0.35
min -0.35

for r ¼ 1 and Gr=Re ¼ �250; boundary condition H2 of kind 4.
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Table 3 refers to the case r ¼ 1 and reports the values

of the Fanning friction factor, of the Nusselt number

and of the correction factors Kd and Ke, for Gr=Re in the

range �2006Gr=Re6 600. This table shows that f Re,
Nu, Kd and Ke are non-monotonic functions of the pa-

rameter Gr=Re. In particular, f Re first increases and

then decreases, reaching a local maximum for

Gr=Re � 500. The Nusselt number presents a local

maximum for Gr=Re � 300 and a local minimum for

Gr=Re � 500. Both Kd and Ke display a local minimum

for Gr=Re � 400 and a local maximum for Gr=Re � 500.

In the case r ¼ 1, the threshold value for the onset of
flow reversal is ðGr=ReÞ0 � �100. This value is almost
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Fig. 3. Contour plots of uðx; yÞ (upper frame) and tðx; yÞ (lower frame
coincident with the threshold value for the onset of flow

reversal which has been found for the H1 boundary

condition (Barletta, 2002).

Fig. 2 represents the contour lines of the dimension-
less velocity and temperature distributions, for r ¼ 1

and Gr=Re ¼ �250. On the other hand, Fig. 3 refers to

r ¼ 1 and Gr=Re ¼ 600. The upper frame of Fig. 2 refers

to the dimensionless velocity distribution and reveals

that, in correspondence to the four corners of the duct

section, regions of flow reversal exist. The upper frame

of Fig. 3 shows that the velocity distribution strongly

differs from the case of forced convection. In particular,
the figure reveals the existence of four local maxima and
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) for r ¼ 1 and Gr=Re ¼ 600; boundary condition H2 of kind 4.
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of a local minimum at the centre of the duct. The lower

frames of Figs. 2 and 3 point out that the wall temper-

ature is not uniform, and that the dimensionless tem-

perature assumes its minimum value at the centre of the
duct and its maximum value at the boundary corners.

The latter circumstance is the reason why the flow re-

versal regions for Gr=Re ¼ �250 take place in corre-

spondence of the four boundary corners. Since the wall

temperature is definitely not uniform, the H2 boundary

condition (peripherally uniform wall heat flux) is quite

distinct from the H1 boundary condition (peripherally

uniform wall temperature).
Figs. 4 and 5 display the contour lines of the di-

mensionless velocity and temperature distributions, for
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Fig. 4. Contour plots of uðx; yÞ (upper frame) and tðx; yÞ (lower frame) f
r ¼ 0:5 and Gr=Re ¼ �180 (Fig. 4) or Gr=Re ¼ 500

(Fig. 5). In the upper frame of Fig. 4, two large regions

of flow reversal are evident, close to the shorter walls of

the boundary. An analysis of the lower frame of this
figure leads to the conclusion that the heat flux in the X -

direction is greater than the heat flux in the Y -direction,
except close to the plane x ¼ 0:5. In the upper frame of

Fig. 5, two local maxima of the dimensionless velocity

occur.

Table 4 displays values of f Re, Nu, Kd and Ke which

refer to r ¼ 0:5, both for negative and for positive val-

ues of the ratio Gr=Re. The table shows that the pa-
rameters f Re and Nu are increasing functions of Gr=Re,
while Kd and Ke are decreasing functions. In the case
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or r ¼ 0:5 and Gr=Re ¼ �180; boundary condition H2 of kind 4.
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Table 4

Values of f Re, Nu, Kd and Ke for a rectangular duct with r ¼ 0:5, for

the boundary condition H2 of kind 4

Gr=Re f Re Nu Kd Ke

)180 1.348 1.300 2.924 8.802

)100 9.315 2.133 1.721 3.498

0 15.55 3.019 1.347 2.039

100 19.90 3.640 1.246 1.686

200 23.41 4.085 1.211 1.583

300 26.21 4.518 1.198 1.551

400 28.56 4.911 1.192 1.539

500 30.43 5.328 1.187 1.530

600 31.84 5.795 1.182 1.518
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r ¼ 0:5, the onset of flow reversal occurs for

Gr=Re � �85. This value is greater than the threshold

value which has been determined for the H1 thermal

boundary condition (Barletta, 2002). Moreover, for

r ¼ 0:2 the threshold value for the onset of flow reversal

is ðGr=ReÞ0 � �30, and this value is much greater than

that for the H1 thermal boundary condition (Barletta,

2002). One can point out that, while in the case of H1
thermal boundary condition ðGr=ReÞ0 is a monotonic

increasing function of the aspect ratio r, in the case of

the H2 boundary condition ðGr=ReÞ0 is a decreasing

function of r.



Table 5

Values of f Re, Nu, Kd and Ke for a rectangular duct with r ¼ 0:2, for

the boundary condition H2 of kind 4

Gr=Re f Re Nu Kd Ke

)50 2.590 0.06508 20.18 99.55

)20 17.66 1.864 1.400 2.242

0 19.07 2.919 1.271 1.770

50 21.04 4.197 1.239 1.675

100 22.46 4.746 1.239 1.685

150 23.66 5.072 1.238 1.692

200 24.77 5.300 1.236 1.693

Table 6

Values of the modified Nusselt number for a square duct ðr ¼ 1Þ, in
the case of forced convection

Boundary conditions Nu�, present paper Nu�, Spiga and

Morini (1996)

4 3.0874 3.091

3L–3S 2.9399 2.943

2L–2S 4.0769 4.083

2C 2.4275 2.430

1L–1S 2.6835 2.686
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Finally, Table 5 displays values of f Re, Nu, Kd and Ke

which refer to r ¼ 0:2, both for negative and for positive

values of the ratio Gr=Re. As in the case r ¼ 0:5, the
parameters f Re and Nu are increasing functions of

Gr=Re, while Kd is a decreasing function.
Table 7

Values of f Re, Nu, Kd and Ke for a square duct (r ¼ 1), for the

boundary condition H2 of kind 3L–3S

Gr=Re f Re Nu Kd Ke

)100 10.44 2.222 1.632 3.107

)50 12.39 2.746 1.451 2.423

0 14.23 3.087 1.378 2.154

100 17.62 3.534 1.316 1.931

200 20.66 3.870 1.287 1.834

300 23.53 4.127 1.271 1.788

400 25.70 4.498 1.258 1.750

Table 8

Values of f Re, Nu, Kd and Ke for a square duct ðr ¼ 1Þ, for the

boundary condition H2 of kind 2L–2S

Gr=Re f Re Nu Kd Ke

)150 10.44 2.789 1.501 2.613

)100 11.75 2.887 1.455 2.437

)50 13.01 2.988 1.414 2.285

0 14.23 3.087 1.378 2.154

100 16.53 3.285 1.321 1.946

200 18.67 3.485 1.277 1.793

300 20.66 3.688 1.245 1.685

400 22.50 3.898 1.223 1.613

500 24.19 4.119 1.208 1.566

600 25.70 4.353 1.199 1.539
4. Other H2 boundary conditions for the square duct

In this section, the eight H2 thermal boundary con-

ditions defined in Table 1 are investigated in the special

case of a square duct, i.e. r ¼ 1. Obviously, for a square

duct, the boundary condition 3L coincides with 3S, the

boundary condition 2L coincides with 2S, while the

boundary condition 1L coincides with 1S. The Fanning

friction factor, the Nusselt number, as well as the mo-
mentum flux correction factor and the kinetic energy

correction factor are evaluated for several values of

Gr=Re. A comparison of the results obtained in the

present paper with those available in the literature is

performed. In particular, the paper by Spiga and Morini

(1996), which refers to the special case of forced con-

vection, is considered. In this paper, as well as in Gao

and Hartnett (1993), different definitions of the average
wall temperature and of the average wall heat flux have

been provided, by taking into account only the contri-

bution of the non-adiabatic walls of the duct. As a

consequence, for the boundary conditions H2 defined in

Table 1, the average wall temperature and the Nusselt

number considered in Spiga and Morini (1996), as well

as in Gao and Hartnett (1993), are given by

T
�
w ¼ 1

2ðaþ bÞ c2

Z a

0

dX T ðX ; 0Þ
�

þ c3

Z b

0

dY T ða; Y Þ

þ c4

Z a

0

dX T ðX ; bÞ þ c1

Z b

0

dY T ð0; Y Þ
�
; ð38Þ

Nu� ¼ �qq�wD

kðT �
w � TbÞ

; ð39Þ

where �qq�w is the average wall heat flux of the non-adia-

batic walls.

In Table 6, the values of the modified Nusselt num-

ber obtained in the present paper are compared with

those obtained analytically and presented by Spiga and
Morini (1996). As it can be easily checked, the values are

in fair agreement, since the first three digits are coinci-

dent.

In Tables 7 and 8, the values of f Re, Nu, Kd and Ke

are reported, both for negative and for positive values of

the ratio Gr=Re. The tables refer to the boundary con-

dition 3L–3S and to the boundary condition 2L–2S re-

spectively. These tables show that the parameters f Re
and Nu are increasing functions of Gr=Re, while Kd and

Ke are decreasing functions of the same parameter. In

the case 3L–3S, the threshold value for the onset of flow

reversal is ðGr=ReÞ0 � �75, while in the case 2L–2S one

has ðGr=ReÞ0 � �180.

Tables 9 and 10 provide the values of f Re, Nu, Kd and

Ke both for negative and for positive values of the ratio

Gr=Re. The tables refer to the boundary condition 2C
and to the boundary condition 1L–1S respectively. In

both cases, the parameters f Re and Nu are increasing

functions of Gr=Re, while Kd and Ke first decrease and



Table 9

Values of f Re, Nu, Kd and Ke for a square duct ðr ¼ 1Þ, for the

boundary condition H2 of kind 2C

Gr=Re f Re Nu Kd Ke

)150 10.44 1.270 2.103 4.851

)100 11.75 1.887 1.626 3.070

)50 13.01 2.509 1.444 2.394

0 14.23 3.087 1.378 2.154

100 16.53 4.033 1.372 2.133

200 18.67 4.711 1.413 2.285

300 20.69 5.197 1.462 2.467

400 22.50 5.568 1.500 2.607

500 24.43 5.862 1.554 2.811

600 26.21 6.115 1.599 2.981

Table 10

Values of f Re, Nu, Kd and Ke for a square duct ðr ¼ 1Þ, for the

boundary condition H2 of kind 1L–1S

Gr=Re f Re Nu Kd Ke

)150 12.39 1.745 1.594 2.941

)100 13.01 2.148 1.474 2.503

)50 13.63 2.597 1.408 2.264

0 14.23 3.087 1.378 2.154

100 15.40 4.178 1.381 2.165

200 16.53 5.376 1.426 2.336

300 17.63 6.621 1.491 2.580

400 18.67 7.859 1.559 2.843

500 19.69 9.030 1.627 3.112

600 20.69 10.21 1.698 3.394

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

a

a

b

b

b b

b

b

b

b

b

b

b

b

b

b

bb b bb

b

c

d

e

f
g

h
i j

k
l

m

n

o

p

q
r

s

tu
v

w

x

y
z
A

B
C

u(x,y)
max  2.79
C :  2.70
B :  2.60
A :  2.50
z :  2.40
y :  2.30
x :  2.20
w :  2.10
v :  2.00
u :  1.90
t :  1.80
s :  1.70
r :  1.60
q :  1.50
p :  1.40
o :  1.30
n :  1.20
m :  1.10
l :  1.00
k :  0.90
j :  0.80
i :  0.70
h :  0.60
g :  0.50
f :  0.40
e :  0.30
d :  0.20
c :  0.10

b :  0.00
a : -0.10
min -0.15

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

a

b

c
d

e

f

g

h

i

j

k

l
m

n

o

p

q

r

s

t

u

v

v

t(x,y)
max  0.42
v :  0.42
u :  0.39
t :  0.36
s :  0.33
r :  0.30
q :  0.27
p :  0.24
o :  0.21
n :  0.18
m :  0.15
l :  0.12
k :  0.09
j :  0.06
i :  0.03
h :  0.00
g : -0.03
f : -0.06
e : -0.09
d : -0.12
c : -0.15
b : -0.18
a : -0.21
min -0.23

Fig. 6. Contour plots of uðx; yÞ (upper frame) and tðx; yÞ (lower frame) for r ¼ 1 and Gr=Re ¼ �200; boundary condition H2 of kind 1L–1S.
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then increase. The minimum of Kd is reached for

Gr=Re � 100 in both cases, while the minimum of Ke is

reached for Gr=Re � 100 in case 2C and for Gr=Re � 0

in case 1L–1S. In case 2C, the threshold value for the
onset of flow reversal is ðGr=ReÞ0 � �50, while in case

1L–1S one has ðGr=ReÞ0 � �100.

In Figs. 6–8, the contour lines of the dimensionless

velocity and of the dimensionless temperature are re-

ported for Gr=Re ¼ �200 and for three different thermal

boundary conditions, i.e. 1L–1S (Fig. 6), 2C (Fig. 7),

and 2L–2S (Fig. 8). In the upper frame of Figs. 6 and 7,

regions of flow reversal are evident close to the non-
adiabatic walls. The lower frames of Figs. 6–8 show that

the dimensionless wall temperature is far from being
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Fig. 7. Contour plots of uðx; yÞ (upper frame) and tðx; yÞ (lower frame) f
uniform. In Figs. 6 and 7, the dimensionless temperature

reaches its maximum in correspondence of the non-

adiabatic walls. In the lower frame of Fig. 8, the maxi-

mum of the dimensionless temperature occurs at the
centre of the duct section and the heat flux along the X -

direction is almost everywhere greater than the heat flux

along the Y -direction.
5. Convergence and grid independence of the numerical

solution

For every H2 boundary condition examined, for all

the values of Gr=Re and of r which have been con-
0.8 1.0

f

f

f fff
f

h

i

k

m
n

o

qr

s

u(x,y)
max  4.39
t :  4.20
s :  3.90
r :  3.60
q :  3.30
p :  3.00
o :  2.70
n :  2.40
m :  2.10
l :  1.80
k :  1.50
j :  1.20
i :  0.90
h :  0.60
g :  0.30
f :  0.00
e : -0.30
d : -0.60
c : -0.90
b : -1.20
a : -1.50
min -1.79

0.8 1.0

a

c

d
e

f

t(x,y)
max  1.13
r :  1.10
q :  1.00
p :  0.90
o :  0.80
n :  0.70
m :  0.60
l :  0.50
k :  0.40
j :  0.30
i :  0.20
h :  0.10
g :  0.00
f : -0.10
e : -0.20
d : -0.30
c : -0.40
b : -0.50
a : -0.60
min -0.68

or r ¼ 1 and Gr=Re ¼ �200; boundary condition H2 of kind 2C.
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Fig. 8. Contour plots of uðx; yÞ (upper frame) and tðx; yÞ (lower frame) for r ¼ 1 and Gr=Re ¼ �200; boundary condition H2 of kind 2L–2S.
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sidered, the convergence and the grid independence of

the numerical solution have been checked, with refer-

ence to the parameters f Re, Nu, Kd and Ke. An ex-

ample of these checks, for a square duct with
Gr=Re ¼ �100, is illustrated in Table 11. Indeed, this

value of Gr=Re is rather critical from a numerical

viewpoint, because it yields flow-reversal regions for

almost all the boundary conditions which have been

studied. In Table 11, three different gridding procedures

have been considered: ‘‘grid’’, ‘‘grid·’’ and ‘‘grid+’’.

The procedure ‘‘grid’’ builds an unstructured and un-

constrained grid; the procedure ‘‘grid·’’ builds an un-
structured grid which is constrained to have nodes
which lie on the diagonals of the square; the procedure

‘‘grid+’’ builds an unstructured grid which is con-

strained to have nodes which lie on the apothems of the

square. In Table 11, two different values of the accu-
racy parameter ‘‘errlim’’ are considered: 7 · 10�8

(higher accuracy) and 7 · 10�7 (lower accuracy). The

table shows that, if the ‘‘errlim’’ parameter is suffi-

ciently small, neither this parameter nor the gridding

procedure has an important influence on the values of

f Re and Nu. In particular, if errlim¼ 7 · 10�8, the

three gridding procedures yield values which agree

within the first three digits and display a small oscil-
lation of the fourth digit.



Table 11

Values of f Re (plain text) and of Nu (in italic) for a square duct with r ¼ 1 and Gr=Re ¼ �100, and for different boundary conditions; comparison

between values obtained by means of different grids and different accuracies

Boundary con-

ditions

errlim¼ 7 · 10�8 errlim¼ 7· 10�7

grid grid· gridþ grid grid· gridþ
4 f Re 9.089 9.082 9.085 9.114 9.085 9.124

Nu 2.743 2.737 2.745 2.768 2.745 2.763

3L–3S f Re 10.43 10.44 10.44 10.44 10.44 10.45

Nu 2.222 2.222 2.223 2.221 2.221 2.232

2L–2S f Re 11.75 11.75 11.75 11.75 11.77 11.77

Nu 2.887 2.888 2.887 2.891 2.914 2.915

2C f Re 11.75 11.75 11.75 11.75 11.75 11.77

Nu 1.887 1.886 1.887 1.886 1.887 1.915

1L–1S f Re 13.01 13.01 13.01 13.01 13.01 13.01

Nu 2.148 2.149 2.148 2.149 2.148 2.149
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6. Conclusions

An analysis of the fully developed mixed convection in

a vertical rectangular duct has been performed. Refer-
ence has been made to the eight H2 thermal boundary

conditions defined by Gao and Hartnett (1993), given by

combinations of isoflux and adiabatic walls. The Bous-

sinesq approximation has been employed and the mean

temperature T0 in a duct cross-section has been chosen as

the reference temperature for the linearization of the

equation of state . ¼ .ðT Þ. The momentum and energy

balance equations have been written in a dimensionless
form. It has been shown that both the dimensionless

velocity uðx; yÞ and the dimensionless temperature tðx; yÞ
are two-dimensional fields which depend only on the

ratio Gr=Re, on the aspect ratio r and on c1, c2, c3, c4.
The set of dimensionless equations has been solved nu-

merically, by means of a Galerkin finite element method

implemented by utilizing the software package FlexPDE.

In the special case of forced convection, the results
have been compared with those obtained by Spiga and

Morini (1996) and by Shah and London (1978). The

comparison has revealed a fair agreement between our

results and those obtained analytically for the friction

factor (Shah and London, 1978) and for the Nusselt

number (Spiga and Morini, 1996).

The effect of buoyancy has been studied, and the

values of the parameters f Re, Nu, Kd and Ke have been
reported as functions of Gr=Re for different values of the
aspect ratio r. First, reference has been made to the H2

thermal boundary condition of kind 4. Then, for the

special case of a square duct, the other H2 boundary

conditions have been investigated. It has been shown

that, in each case, there exists a negative real number

ðGr=ReÞ0 such that for Gr=Re < ðGr=ReÞ0 the phenome-

non of flow reversal occurs. This is a well known effect
which arises for mixed convection in vertical or inclined

ducts, and implies the existence of a region within the
duct where the local fluid velocity is opposite to the

mean fluid flow.
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