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Abstract

In this paper, combined forced and free convection is studied in a vertical rectangular duct with a prescribed uniform wall heat
flux (H2 boundary condition). A different heat flux value for each plane wall is considered; the condition of a uniform wall heat flux
throughout the duct results as a special case. The local momentum and energy balance equations are written in a dimensionless form
and solved numerically, by means of a Galerkin finite element method. The numerical solution gives the dimensionless velocity and
temperature distributions, together with the values of the Fanning friction factor, of the Nusselt number, of the momentum flux
correction factor and of the kinetic energy correction factor. These dimensionless parameters are reported as functions of the aspect
ratio and of the ratio between the Grashof number, Gr, and the Reynolds number, Re. The threshold values of Gr/Re for the onset

of flow reversal are evaluated.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The investigation of convection in non-circular ducts
with a prescribed wall heating requires distinct bound-
ary conditions, namely the H1 boundary condition and
the H2 boundary condition. As is well known, the for-
mer corresponds to an axially uniform wall heat flux
with a peripherally uniform wall temperature, while the
latter corresponds to an axially and peripherally uni-
form wall heat flux. Sometimes, the concept of H2
boundary condition is extended, i.e. the wall heat flux is
assumed to be axially uniform but peripherally piecewise
uniform. Therefore, in the case of a rectangular duct, the
H2 boundary conditions imply that the heat flux as-
sumes either the same value on all the walls of the duct
or a different value on each wall. Boundary conditions
of kind H2 are good models for the thermal analysis of
heating/cooling devices where no important axial change
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of the wall heat flux occurs, and the thermal conduc-
tivity of the wall is not very high. For instance, appli-
cations can be found in solar collector design and
thermal control of electronic equipments.

In the literature, many authors have analysed the
forced or mixed convection in rectangular ducts; most of
the papers on this subject have been reviewed by Hart-
nett and Kostic (1989). In the last decade, some authors
have studied the combined forced and free convection in
rectangular ducts by employing numerical or experi-
mental methods. In particular, the occurrence of flow
reversal in a vertical heated channel has been studied
experimentally through flow visualization (Gau et al.,
1992). Cheng et al. (1995) have studied numerically the
inlet region of a vertical rectangular duct with one wall
kept at a higher temperature and the others at a lower
temperature. Recently, the study has been extended to
the case of two or more walls kept at a higher temper-
ature (Cheng et al., 2000). Lee (1999) has utilized the
velocity—vorticity formulation to solve numerically the
balance equations in the case of natural convection in a
vertical rectangular duct with three adiabatic walls and
the last one isothermal or subjected to a uniform heat
flux. In Hwang et al. (2001), the stream function method
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Nomenclature

a, b lengths of the rectangle sides
c1, ¢, ¢3, ¢4 real coefficients, defined by Eq. (4)

D 2ab/(a + b), hydraulic diameter
f Fanning friction factor, defined by Eq. (30)
g magnitude of the gravitational acceleration

Gr Grashof number, defined in Eq. (20)
(Gr/Re)' threshold value of Gr/Re for the onset of
flow reversal

h average convection coeflicient, defined in Eq.
(32)

k thermal conductivity

Ky momentum flux correction factor, defined by
Eq. (36)

K. kinetic energy correction factor, defined by
Eq. (37)

Nu Nusselt number, defined in Eq. (32)
Nu* modified Nusselt number, defined by Eq. (39)

p pressure

P difference between the pressure and the hy-
drostatic pressure

90 wall heat flux per unit area

Gw average wall heat flux per unit area

q., modified average wall heat flux per unit area

Re Reynolds number, defined in Eq. (20)

t dimensionless temperature, defined in Eq.
(20)

t, dimensionless bulk temperature, defined by
Eq. (35)

tw dimensionless average wall temperature, de-
fined by Eq. (34)

T temperature

Ty bulk temperature in a duct section

T mean temperature in a duct section, defined

B by Eq. (6)

Ty average wall temperature

T; modified average wall temperature, defined
by Eq. (38)

u U/U,, dimensionless velocity

U Z-component of the fluid velocity

Uy mean fluid velocity in a duct section, defined
by Eq. (10)

X,y dimensionless coordinates, defined in Eq. (20)
X, Y, Z rectangular coordinates

Greeks

o thermal diffusivity

p volumetric coefficient of thermal expansion
AT qoD/k, reference temperature difference

A dimensionless parameter, defined in Eq. (20)
n dimensionless parameter, defined in Eq. (20)
u dynamic viscosity

v kinematic viscosity

0 mass density

Qo mass density for 7 = Tj

a b/a, aspect ratio

Ty average wall shear stress, defined by Eq. (29)

has been employed to solve numerically the governing
equations for mixed convection in a horizontal square
duct or in a horizontal circular tube. Moreover, some
analytical solutions for laminar convection in vertical
rectangular ducts are available in the recent literature. In
particular, the free convection regime has been studied
by Mc Bain (1999), for a duct with two isothermal and
two adiabatic walls. On the other hand, forced convec-
tion has been studied by Spiga and Morini (1996) with
reference to the eight H2 boundary conditions defined
by Gao and Hartnett (1993). Two analytical solutions
for mixed convection flow in a vertical rectangular duct
have been recently presented by Barletta (2001, 2002).
Barletta (2001) has considered a class of boundary
conditions such that at least one wall of the duct is kept
isothermal. On the other hand, Barletta (2002) has
analysed the HI boundary condition.

The aim of the present paper is to study the fully
developed mixed convection in a vertical rectangular
duct, with H2 boundary conditions. In the mathematical
model, it will be assumed that the prescribed heat flux
has a different value on each wall of the duct. In the
examples, the case of a rectangular duct with an aspect

ratio o strictly less than 1 will be discussed by consid-
ering the same value of the heat flux on all the walls of
the duct, while the case of a square duct (¢ = 1) will be
discussed for all the eight H2 boundary conditions de-
fined by Gao and Hartnett (1993). The momentum and
energy balance equations will be written in a dimen-
sionless form and then solved numerically by means of a
Galerkin finite element method. To implement the nu-
merical code, the software package FlexPDE (© PDE-
Solutions, Inc.) will be used. The solution will be
compared with those available in the literature for the
forced convection regime, in order to check the reli-
ability and the precision of the numerical code.

2. Mathematical model

Let us consider a Newtonian fluid which flows stea-
dily in a vertical duct with an infinite length and a
rectangular cross-section. A drawing of the duct section
and of the chosen coordinate axes (X, Y) is reported in
Fig. 1. Let us assume that the flow is laminar and par-
allel, so that only the Z-component U of the velocity
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Fig. 1. Drawing of the duct section and of the thermal boundary
conditions.

vector U is non-zero. The thermal conductivity %, the
thermal diffusivity o and the dynamic viscosity u of the
fluid are treated as constants. The effect of viscous dis-
sipation in the fluid is neglected, and the Boussinesq
approximation is employed. Since this approximation
implies that the velocity field is solenoidal, one has
oU/0Z =0, 1ie. U=U(X,Y). On account of the above
assumptions, the momentum balance equation and the
energy balance equation yield

oP oP
ﬁzoa WZO, (1)
aP 62U 62

orT *T  *T T
( ) 3)

V=" tor oz
where P = p+ 9,gZ is the difference between the pres-
sure and the hydrostatic pressure. As a consequence of
Eq. (1), P depends only on Z. The thermal boundary
conditions, described also in Fig. 1, can be written in the
form

or aT
— K< = C14o, = 29o,
X |,y aY @
ka—T =c ka—T =c
aX X=a - o aY Y=b -l

where ¢y, ¢,, ¢3, ¢4 are arbitrary real coefficients and ¢ is
a prescribed wall heat flux per unit area. If ¢; = ¢, =
¢3 = ¢4 = 1, the duct is subjected to a uniform heat flux
qo on all the walls. In this case, if g is positive the duct is
heated. By employing Eq. (4), one can obtain the eight
H2 boundary conditions, usually denoted as 4, 3L, 3S,
2L, 2S, 2C, 1L and 1S, defined by Gao and Hartnett
(1993). The values of the coefficients ¢y, ¢;, ¢3, ¢4 which
correspond to these eight cases are reported in Table 1.
The reference temperature 7; must be chosen so that the
linear equation of state

¢ =ell = B(T = Ty)] (5)

Table 1
Values of ¢y, ¢z, ¢3 and ¢4 for the eight H2 thermal boundary condi-
tions defined by Gao and Hartnett (1993)

C1 (&) 3 C4
4 1 1 1 1
3L 1 1 0 1
3S 1 1 1 0
2L 0 1 0 1
28 1 0 1 0
2C 1 1 0 0
1L 0 1 0 0
1S 1 0 0 0

is satisfied with the highest accuracy. Barletta and
Zanchini (1999) have shown that the best choice of Tj is
the mean fluid temperature in a cross-section, namely

T, = lb dX/dYTXYZ) (6)
a

By differentiating Eq. (2) with respect to Z, one obtains
oT dT, . 1 &P )
0Z dzZ = g,gp dz*’

Eq. (7) implies that 07 /0Z depends only on Z. By dif-
ferentiating Eq. (6) with respect to Z, one obtains

d7,
dz ab dX/d oz az ®)

Egs. (7) and (8) imply that d*P/dZ* = 0, i.e. that dP/dZ
is a constant. Eq. (3) can be rewritten as
dr, T @r  d'n
&‘%&ﬁﬁﬁ&f~ ®)
The mean velocity U, in a duct cross-section is defined
by the relation
1
ab
By integrating Eq. (9) with respect to X and Y in a duct
cross-section, and by taking into account Eq. (10) and
the boundary conditions (4), one obtains
arn, d Ty _ agqo
“dz = "dz2 " kab
By introducing the hydraulic diameter D = 2ab/(a + b)
and the mean value of the wall heat flux g, defined by
(c1+e3)b+ (c2+ca)a
2(a+b) ’
one can rewrite Eq. (11) as
dT() d TO 40(qw
dz %4z " kp - (13)
Since 07/0Z is independent of X and Y, by differenti-
ating Eq. (9) with respect to Z one obtains

U@ — &'
a2~ Yap-

Uy = dX/ dyu(x,y). (10)

[(c1 +¢3)b + (c2 + c4)al. (11)

(12)

qw = 9o

U~

(14)
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Moreover, by differentiating Eq. (13) with respect to Z
one is led to the equation

a’n &
Vi T %z (15)
A comparison between Egs. (14) and (15) yields

d’7y
U-U))—— =0. 16
U - ) n (16)
Since U — U, cannot vanish because Uy # 0 and the
velocity is zero at the duct walls, one reaches the con-
clusion

d’7,

Egs. (13) and (17) yield

dTo 4OCqW

dZ kDU, (18)

By substituting Egs. (17) and (18) into Eq. (9), one ob-
tains

O’T O'T  4gy
X2 ' dY? kDU,

(19)

Let us define the following dimensionless variables:

X Y b U
X =—, y=— 0=, Uu=-——,
a a a Uy
qw (CI+C3)U+02+C4 T—-T,
= — = t:—
1 90 2(1 + o) ’ AT '’ (20)
U 3 2
Re — OD’ Gr:gﬁATD 7 __a E,
v V2 uly dZ

where the reference temperature difference AT is given
by
D
AT =12 (21)
k
It will be assumed, without loss of generality, that the
parameter # is always positive, so that g, and g, have
the same sign.
The ratio between the Reynolds number and the
Grashof number is
Gr  gpATD?

Re vUy

Since 07 /0Z = dT,/dZ, then ¢t = #(x,y). On account of
Egs. (20) and (21), Egs. (2) and (19) can be written in the
dimensionless form

(22)

Pu u  Gr(l+0)
@ a—yz E 40_2 [+ i - 0, (23)
* ot (1 2

_(tor,, (24)

a2 2 o2

The boundary conditions for the dimensionless velocity
distribution u are as follows:

u(0,y) = u(l,y) = u(x,0) = u(x,0) = 0. (25)

By employing Egs. (20) and (21), one can write the
thermal boundary conditions (4) in the dimensionless
form

g __1+ac @ __l—l—ac
0x |, N 26 W |, N 26 Y
(26)
ot l+o ot l+o
— = c — = Cs.
x| _, 26 W ey 26 ¢

On account of Eq. (10), one can obtain the following
constraint for the velocity distribution u:

/01 dx/otI dyu(x,y) = o. (27)

Moreover, Eq. (6) yields the following constraint for the
temperature distribution #:

/01 dx/og dyt(x,y) = 0. (28)

Eqgs. (23)-(28) show that the dimensionless fields u(x, y)
and #(x,y), as well as the dimensionless parameter A,
depend only on the prescribed values of a, ¢y, ¢, ¢3, ¢4
and Gr/Re. As a consequence, for fixed values of g, ¢y,
¢, €3, ¢4 and Gr/Re, the fields u(x,y), t(x,y) and the
parameter A obtained for heated duct (¢o > 0) and up-
ward flow (Up > 0) coincide with those obtained for
cooled duct (go < 0) and downward flow (U, <0).
Moreover, the fields u(x,y), ¢(x,y) and the parameter 4
obtained for heated duct (¢o > 0) and downward flow
(Up < 0) coincide with those obtained for cooled duct
(g0 < 0) and upward flow (Up > 0). As it will be shown
in Sections 3 and 4, for negative values of the ratio
Gr/Re, the flow-reversal phenomenon may occur. As is
well known, this phenomenon corresponds to negative
local values of u, i.e. to a local velocity with a direction
opposite to that of the mean flow. For instance, negative
values of Gr/Re can correspond to gy < 0 and Uy > 0. In
this case, if one considers the boundary condition 4 and
if |Gr/Re| exceeds a threshold value, the fluid density
next to the boundary becomes much higher than the
mean fluid density and local downward flow may occur
in the neighbourhood of the boundary.
The average wall shear stress is given by

b b
L oU oU
Y= vy - [ arE
’ 2(a—|—b)[/0 dr oy o /0 4oy

@ U ¢« U
+ / dX — — / dX — } (29)
0 oY |, 0 oY |,_,
On account of Egs. (20) and (29), one can define the
Fanning friction factor as
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2Ty
f_QoUg
20  Qu c  Qu
= dy— —/ dy—
(1+ 0)’Re [/o o o Jo o —
U du U du
+/ dx— —/ dx— . 30
0 ay »=0 0 ay y=0 ( )

It can be easily shown that, as a consequence of Egs.
(23), (28) and (30), the parameters f and A are related
through the expression

20%)

fRe:m.

(31)

The mean Nusselt number in a duct cross-section can be

defined by the relation

NP D (32)
k kK(Ty—T)

where 7 is the average convection coefficient, g,, is the

average wall heat flux, defined by Eq. (12), T,, is the

average wall temperature in a duct section and T; is

the bulk temperature. By introducing the dimensionless

quantities defined by Egs. (20) and (21) into Eq. (32), one

obtains

, (33)

where 7, is the mean value of the dimensionless wall
temperature, namely

ty _ﬁ {/Oldxt(x,O) + /Ogdyt(l,y)
+ /01 dxt(x,0) + /OJ dyt(07y)] (34)

and #, is the dimensionless bulk temperature, namely
1 1 a

ty =— / dx/ dytu. (35)
0 Jo 0

Table 2

Finally, the momentum flux correction factor and the
kinetic energy correction factor (Shah and London,
1978) are given by

a b 2 1 o
Kd:i/ dX/ dY(E) :l/ dx/ dyu?,
ab Jg 0 Uy 0 Jo 0

(36)

1 a b U 3 1 1 o 3

(37)

3. Boundary condition H2 of kind 4: Fanning friction
factor and Nusselt number

The momentum and energy balance equations (23)
and (24), together with the boundary conditions (25),
(26) and the constraints (27), (28), have been solved
numerically for given values of the parameters g, ci, ca,
¢3, ¢4 and Gr/Re. The software package FlexPDE Ver-
sion 3.01 (© PDESolutions Inc.) has been employed in
order to build the computational grid, to map Egs. (23)-
(28) into a linear system of algebraic equations and to
solve this system. This software solves partial differential
equations by utilizing a Galerkin finite element method.
The spatial domain under assumption, i.e. the rectangle
[0, 1] x [0, ], is divided into triangular elements and the
grid is iteratively refined until a prescribed value of the
accuracy parameter “errlim’” defined by the software
is reached. The numerical solutions have been checked
in order to obtain values of Nu, fRe, K4 and K, inde-
pendent of the grid as well as of the value of the accu-
racy parameter.

In this section, the boundary condition H2 of kind 4
is considered (¢; =c¢; =c¢3 =c4 =1). Three different
examples, given by three different values of the aspect
ratio o, are discussed: 6 =1, 6 = 0.5 and ¢ = 0.2.

Table 2 refers to Gr/Re = 0, i.e. to forced convection,
and reports a comparison between the values of the

Comparison between the values of f'Re and of Nu available in the literature and those obtained in the present paper, for Gr/Re = 0

4 Present paper Shah and London (1978) Spiga and Morini (1996)
fRe Nu fRe Nu Nu

1/10 21.1689 2.9061 21.16888 2.95 2.907
1/9 20.9039 2.9065 20.90385 2.94 -

1/8 20.5847 2.9074 20.58464 2.94 2.909
/7 20.1931 2.9092 20.19310 2.94 -

1/6 19.7022 2.9126 19.70220 293 -

1/5 19.0705 2.9192 19.07050 2.93 2.922
1/4 18.2328 2.9326 18.23278 2.94 2.935
1/3 17.0897 2.9608 17.08967 2.97 2.964
12 15.5481 3.0192 15.54806 3.02 3.022
1 14.2271 3.0874 14.22708 3.091 3.091
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Fanning friction factor and of the Nusselt number ob-
tained in the present paper and those reported by Shah
and London (1978) and by Spiga and Morini (1996).
The values presented in Table 2 refer to several aspect
ratios. The comparison reveals a very good agreement
between the values of the friction factor obtained in the
present paper and those presented by Shah and London
(1978), while the values of the Nusselt number obtained
in the present paper slightly differ from those reported
by Shah and London (1978). However, the agreement
with the values of the Nusselt number obtained analyt-
ically by Spiga and Morini (1996) is very good, since the
first three digits are coincident. Indeed, the results re-
ported by Shah and London (1978) for the Fanning
friction factor were obtained by solving the balance

879

Table 3
Values of fRe, Nu, K4 and K. for a square duct (¢ =1), for the
boundary condition H2 of kind 4

Gr/Re fRe Nu Ky K.
-200 3.617 2.545 1.789 3.785
—-100 9.085 2.743 1.547 2.795
0 14.23 3.087 1.378 2.154
100 18.67 3.423 1.273 1.778
200 22.82 3.630 1.204 1.550
300 25.70 4.156 1.171 1.449
400 31.34 3.794 1.138 1.361
500 36.26 3.763 1.139 1.378
600 31.19 5.763 1.138 1.359

equations analytically, while those for the Nusselt
number were obtained numerically.

u(x,y)
max 3.22
q: 3.20
p: 3.00
o: 2.80
n: 2.60
m: 2.40
l: 2.20
k: 2.00
i: 1.80
|: 1.60
h: 1.40
? : 1.20
: 1.00
e: 0.80
d: 0.60
[ 0.40
b: 0.20
a: 0.00
min -0.15
1(x,y)
max 0.43
p: 0.40
0: 0.35
n: 0.30
m: 0.25
I 0.20
k: 0.15
i: 0.10
[ 0.05
h: 0.00
? : -0.05
: -0.10
e: -0.15
d: -0.20
c: -0.25
b: -0.30
a: -0.35
min -0.35

Fig. 2. Contour plots of u(x,y) (upper frame) and #(x,y) (lower frame) for ¢ = 1 and Gr/Re = —250; boundary condition H2 of kind 4.
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Table 3 refers to the case ¢ = 1 and reports the values
of the Fanning friction factor, of the Nusselt number
and of the correction factors K4 and K., for Gr/Re in the
range —200 < Gr/Re < 600. This table shows that f Re,
Nu, K4 and K, are non-monotonic functions of the pa-
rameter Gr/Re. In particular, fRe first increases and
then decreases, reaching a local maximum for
Gr/Re ~ 500. The Nusselt number presents a local
maximum for Gr/Re =~ 300 and a local minimum for
Gr/Re =~ 500. Both Ky and K, display a local minimum
for Gr/Re ~ 400 and a local maximum for Gr/Re =~ 500.

In the case o = 1, the threshold value for the onset of
flow reversal is (Gr/Re) ~ —100. This value is almost

coincident with the threshold value for the onset of flow
reversal which has been found for the H1 boundary
condition (Barletta, 2002).

Fig. 2 represents the contour lines of the dimension-
less velocity and temperature distributions, for o =1
and Gr/Re = —250. On the other hand, Fig. 3 refers to
¢ = 1 and Gr/Re = 600. The upper frame of Fig. 2 refers
to the dimensionless velocity distribution and reveals
that, in correspondence to the four corners of the duct
section, regions of flow reversal exist. The upper frame
of Fig. 3 shows that the velocity distribution strongly
differs from the case of forced convection. In particular,
the figure reveals the existence of four local maxima and

u(x,y)

max

30 oo
2.0
0000
coo=
SoTqo

SN WWRRUNITNONNNDDOOOO2NNWWARR
QONOTIOUICTIONOUIOTIONIO IO VOO IO 1IN

QO rMQ T XTI T 0TATOHC <S X<ND>WOU
[elelelolololololelolelel ool ol I VI VI VENENENINININININ

Hx,y)

max

35

COOOO000000000000
220000000 NIN
OINOHRODHON N~

JVoOoQ0 QTR

'

Fig. 3. Contour plots of u(x,y) (upper frame) and #(x, y) (lower frame) for ¢ = 1 and Gr/Re = 600; boundary condition H2 of kind 4.
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of a local minimum at the centre of the duct. The lower
frames of Figs. 2 and 3 point out that the wall temper-
ature is not uniform, and that the dimensionless tem-
perature assumes its minimum value at the centre of the
duct and its maximum value at the boundary corners.
The latter circumstance is the reason why the flow re-
versal regions for Gr/Re = —250 take place in corre-
spondence of the four boundary corners. Since the wall
temperature is definitely not uniform, the H2 boundary
condition (peripherally uniform wall heat flux) is quite
distinct from the H1 boundary condition (peripherally
uniform wall temperature).

Figs. 4 and 5 display the contour lines of the di-
mensionless velocity and temperature distributions, for

881

6=0.5 and Gr/Re= —180 (Fig. 4) or Gr/Re =500
(Fig. 5). In the upper frame of Fig. 4, two large regions
of flow reversal are evident, close to the shorter walls of
the boundary. An analysis of the lower frame of this
figure leads to the conclusion that the heat flux in the X-
direction is greater than the heat flux in the Y-direction,
except close to the plane x = 0.5. In the upper frame of
Fig. 5, two local maxima of the dimensionless velocity
occur.

Table 4 displays values of f Re, Nu, K4 and K. which
refer to ¢ = 0.5, both for negative and for positive val-
ues of the ratio Gr/Re. The table shows that the pa-
rameters f Re and Nu are increasing functions of Gr/Re,
while K4 and K, are decreasing functions. In the case

0.8 T————— s

0.6

u(x.y)

oo3
R
3

g

0.4

0.2

OOOO—= ==N NNWWWE D
OWNON = ANOWDWONN
SOS00 OSSO0 oSO ooU

u
JMoToQO QI T TR T3S

-0.2

0.4

0.6

0.8 i

0.6 -

1(x,y)

N3
D
X

0.4 -

TE
AR |

CO00000000000000
0O = NNWWARNIVIDDN
lslalsTlstitelgtslteli oty la]

-0.2 4

0.4
X

0.2

0.6

3NTO0QO QT T T A TITOTAOTOFC IS X<N

0.8

Fig. 4. Contour plots of u(x,y) (upper frame) and #(x, y) (lower frame) for ¢ = 0.5 and Gr/Re = —180; boundary condition H2 of kind 4.
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L I Lo I I I
087 u(x.y)
max 1.69
q: 1.60
] B 1:80
_ L o: .
0'6, n: 1.30
m: 1.20
|: 1.10
k: 1.00
L 0.90
[ 0.80
h: 0.70
?: 0.60
: 0.50
e: 0.40
rod: 0.30
[ 0.20
b: 0.10
a: 0.00
min 0.00
-0.2 -
T L B L AL B B
0.0 0.2 0.4 0.6 0.8 1.0
L I P I I I
0.87 t(x,y)
max 0.35
p: 0.33
| TR
_ L n: .
06, m: 0.24
l: 0.21
k: 0.18
j: 0.15
L1 0.12
h: 0.09
?: 0.06
: 0.03
e: 0.00
d: -0.03
rc: -0.06
b: -0.09
a: -0.12
min -0.15
-0.2 .

0.2 0.4

0.6 0.8 1.0

Fig. 5. Contour plots of u(x,y) (upper frame) and #(x,y) (lower frame) for ¢ = 0.5 and Gr/Re = 500; boundary condition H2 of kind 4.

Table 4

Values of f Re, Nu, Kq and K, for a rectangular duct with ¢ = 0.5, for

the boundary condition H2 of kind 4

Gr/Re fRe Nu Ky K.
-180 1.348 1.300 2.924 8.802
—-100 9.315 2.133 1.721 3.498
0 15.55 3.019 1.347 2.039
100 19.90 3.640 1.246 1.686
200 23.41 4.085 1.211 1.583
300 26.21 4.518 1.198 1.551
400 28.56 4911 1.192 1.539
500 30.43 5.328 1.187 1.530
600 31.84 5.795 1.182 1.518

0=0.5, the onset of flow reversal occurs for
Gr/Re ~ —85. This value is greater than the threshold
value which has been determined for the H1 thermal
boundary condition (Barletta, 2002). Moreover, for
o = 0.2 the threshold value for the onset of flow reversal
is (Gr/Re)' ~ —30, and this value is much greater than
that for the H1 thermal boundary condition (Barletta,
2002). One can point out that, while in the case of H1
thermal boundary condition (Gr/Re)' is a monotonic
increasing function of the aspect ratio ¢, in the case of
the H2 boundary condition (Gr/Re) is a decreasing
function of .
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Table 5
Values of f Re, Nu, K4 and K, for a rectangular duct with ¢ = 0.2, for
the boundary condition H2 of kind 4

Table 6
Values of the modified Nusselt number for a square duct (¢ = 1), in
the case of forced convection

Gr/Re fRe Nu K4 K.
=50 2.590 0.06508 20.18 99.55
-20 17.66 1.864 1.400 2.242
0 19.07 2919 1.271 1.770
50 21.04 4.197 1.239 1.675
100 22.46 4.746 1.239 1.685
150 23.66 5.072 1.238 1.692
200 24.77 5.300 1.236 1.693

Finally, Table 5 displays values of f Re, Nu, K4 and K,
which refer to ¢ = 0.2, both for negative and for positive
values of the ratio Gr/Re. As in the case 0 = 0.5, the
parameters fRe and Nu are increasing functions of
Gr/Re, while Ky is a decreasing function.

4. Other H2 boundary conditions for the square duct

In this section, the eight H2 thermal boundary con-
ditions defined in Table 1 are investigated in the special
case of a square duct, i.e. ¢ = 1. Obviously, for a square
duct, the boundary condition 3L coincides with 3S, the
boundary condition 2L coincides with 2S, while the
boundary condition 1L coincides with 1S. The Fanning
friction factor, the Nusselt number, as well as the mo-
mentum flux correction factor and the kinetic energy
correction factor are evaluated for several values of
Gr/Re. A comparison of the results obtained in the
present paper with those available in the literature is
performed. In particular, the paper by Spiga and Morini
(1996), which refers to the special case of forced con-
vection, is considered. In this paper, as well as in Gao
and Hartnett (1993), different definitions of the average
wall temperature and of the average wall heat flux have
been provided, by taking into account only the contri-
bution of the non-adiabatic walls of the duct. As a
consequence, for the boundary conditions H2 defined in
Table 1, the average wall temperature and the Nusselt
number considered in Spiga and Morini (1996), as well
as in Gao and Hartnett (1993), are given by

%

|

+c4/oadXT(X,b)+c| /OdeT(O, Y)}, (38)

a b
cz/ dXT(X,0)+C3/ dYT(a,Y)
0 0

9,0

Nu* = —
KT, —T,)

(39)
where g, is the average wall heat flux of the non-adia-
batic walls.

In Table 6, the values of the modified Nusselt num-
ber obtained in the present paper are compared with
those obtained analytically and presented by Spiga and

Boundary conditions Nu*, present paper  Nu*, Spiga and

Morini (1996)

4 3.0874 3.091
3L-3S 2.9399 2.943
21L-2S 4.0769 4.083
2C 2.4275 2.430
1L-1S 2.6835 2.686

Morini (1996). As it can be easily checked, the values are
in fair agreement, since the first three digits are coinci-
dent.

In Tables 7 and 8, the values of f Re, Nu, K4 and K,
are reported, both for negative and for positive values of
the ratio Gr/Re. The tables refer to the boundary con-
dition 3L-3S and to the boundary condition 2L-2S re-
spectively. These tables show that the parameters f Re
and Nu are increasing functions of Gr/Re, while K4 and
K. are decreasing functions of the same parameter. In
the case 3L-3S, the threshold value for the onset of flow
reversal is (Gr/Re)’ ~ —75, while in the case 2L-2S one
has (Gr/Re)' ~ —180.

Tables 9 and 10 provide the values of f Re, Nu, K4 and
K. both for negative and for positive values of the ratio
Gr/Re. The tables refer to the boundary condition 2C
and to the boundary condition 1L-1S respectively. In
both cases, the parameters f Re and Nu are increasing
functions of Gr/Re, while K4 and K. first decrease and

Table 7
Values of fRe, Nu, K4 and K. for a square duct (¢ = 1), for the
boundary condition H2 of kind 3L-3S

Gr/Re fRe Nu Ky K.
-100 10.44 2.222 1.632 3.107
-50 12.39 2.746 1.451 2.423
0 14.23 3.087 1.378 2.154
100 17.62 3.534 1.316 1.931
200 20.66 3.870 1.287 1.834
300 23.53 4.127 1.271 1.788
400 25.70 4.498 1.258 1.750

Table 8

Values of fRe, Nu, K4 and K. for a square duct (¢ = 1), for the
boundary condition H2 of kind 2L.-2S

Gr/Re fRe Nu Ky K.
-150 10.44 2.789 1.501 2.613
-100 11.75 2.887 1.455 2.437
=50 13.01 2.988 1.414 2.285
0 14.23 3.087 1.378 2.154
100 16.53 3.285 1.321 1.946
200 18.67 3.485 1.277 1.793
300 20.66 3.688 1.245 1.685
400 22.50 3.898 1.223 1.613
500 24.19 4.119 1.208 1.566
600 25.70 4.353 1.199 1.539
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Table 9 Table 10
Values of fRe, Nu, K4 and K. for a square duct (¢ = 1), for the Values of fRe, Nu, K4 and K. for a square duct (¢ = 1), for the
boundary condition H2 of kind 2C boundary condition H2 of kind 1L-1S
Gr/Re fRe Nu Ky K. Gr/Re fRe Nu Ky K.
—150 10.44 1.270 2.103 4.851 —150 12.39 1.745 1.594 2.941
—-100 11.75 1.887 1.626 3.070 -100 13.01 2.148 1.474 2.503
=50 13.01 2.509 1.444 2.394 -50 13.63 2.597 1.408 2.264
0 14.23 3.087 1.378 2.154 0 14.23 3.087 1.378 2.154
100 16.53 4.033 1.372 2.133 100 15.40 4.178 1.381 2.165
200 18.67 4.711 1413 2.285 200 16.53 5.376 1.426 2.336
300 20.69 5.197 1.462 2.467 300 17.63 6.621 1.491 2.580
400 22.50 5.568 1.500 2.607 400 18.67 7.859 1.559 2.843
500 24.43 5.862 1.554 2.811 500 19.69 9.030 1.627 3.112
600 26.21 6.115 1.599 2.981 600 20.69 10.21 1.698 3.394
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Fig. 6. Contour plots of u(x,y) (upper frame) and #(x, y) (lower frame) for ¢ = 1 and Gr/Re = —200; boundary condition H2 of kind 1L-1S.
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then increase. The minimum of Ky is reached for
Gr/Re ~ 100 in both cases, while the minimum of X, is
reached for Gr/Re ~ 100 in case 2C and for Gr/Re ~ 0
in case 1L-1S. In case 2C, the threshold value for the
onset of flow reversal is (Gr/Re)’ =~ —50, while in case
1L-1S one has (Gr/Re)" ~ —100.

In Figs. 6-8, the contour lines of the dimensionless
velocity and of the dimensionless temperature are re-
ported for Gr/Re = —200 and for three different thermal
boundary conditions, i.e. 1L-1S (Fig. 6), 2C (Fig. 7),
and 2L-2S (Fig. 8). In the upper frame of Figs. 6 and 7,
regions of flow reversal are evident close to the non-
adiabatic walls. The lower frames of Figs. 68 show that
the dimensionless wall temperature is far from being

~
~

~
~
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uniform. In Figs. 6 and 7, the dimensionless temperature
reaches its maximum in correspondence of the non-
adiabatic walls. In the lower frame of Fig. 8, the maxi-
mum of the dimensionless temperature occurs at the
centre of the duct section and the heat flux along the X-
direction is almost everywhere greater than the heat flux
along the Y-direction.

5. Convergence and grid independence of the numerical
solution

For every H2 boundary condition examined, for all
the values of Gr/Re and of ¢ which have been con-
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Fig. 7. Contour plots of u(x,y) (upper frame) and ¢(x, y) (lower frame) for ¢ = 1 and Gr/Re = —200; boundary condition H2 of kind 2C.
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Fig. 8. Contour plots of u(x,y) (upper frame) and #(x,y) (lower frame) for ¢ = 1 and Gr/Re = —200; boundary condition H2 of kind 2L-2S.

sidered, the convergence and the grid independence of
the numerical solution have been checked, with refer-
ence to the parameters f Re, Nu, K4 and K.. An ex-
ample of these checks, for a square duct with
Gr/Re = —100, is illustrated in Table 11. Indeed, this
value of Gr/Re is rather critical from a numerical
viewpoint, because it yields flow-reversal regions for
almost all the boundary conditions which have been
studied. In Table 11, three different gridding procedures
have been considered: “grid”, “gridx” and “grid+”.
The procedure “grid” builds an unstructured and un-
constrained grid; the procedure “gridx” builds an un-
structured grid which is constrained to have nodes

which lie on the diagonals of the square; the procedure
“grid+” builds an unstructured grid which is con-
strained to have nodes which lie on the apothems of the
square. In Table 11, two different values of the accu-
racy parameter “errlim” are considered: 7x1078
(higher accuracy) and 7x10~7 (lower accuracy). The
table shows that, if the “errlim” parameter is suffi-
ciently small, neither this parameter nor the gridding
procedure has an important influence on the values of
fRe and Nu. In particular, if errlim=7x10"%, the
three gridding procedures yield values which agree
within the first three digits and display a small oscil-
lation of the fourth digit.
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Table 11

Values of f Re (plain text) and of Nu (in italic) for a square duct with ¢ = 1 and Gr/Re = —100, and for different boundary conditions; comparison
between values obtained by means of different grids and different accuracies

Boundary con- errlim=7x10"%

errlim=7x10"

ditions

grid gridx grid+ grid gridx grid+
4 fRe 9.089 9.082 9.085 9.114 9.085 9.124
Nu 2.743 2.737 2.745 2.768 2.745 2.763

3L-3S fRe 10.43 10.44 10.44 10.44 10.44 10.45
Nu 2.222 2.222 2.223 2.221 2.221 2.232

2L-2S fRe 11.75 11.75 11.75 11.75 11.77 11.77
Nu 2.887 2.888 2.887 2.891 2.914 2.915

2C fRe 11.75 11.75 11.75 11.75 11.75 11.77
Nu 1.887 1.886 1.887 1.886 1.887 1.915

1L-1S fRe 13.01 13.01 13.01 13.01 13.01 13.01
Nu 2.148 2.149 2.148 2.149 2.148 2.149

6. Conclusions

An analysis of the fully developed mixed convection in
a vertical rectangular duct has been performed. Refer-
ence has been made to the eight H2 thermal boundary
conditions defined by Gao and Hartnett (1993), given by
combinations of isoflux and adiabatic walls. The Bous-
sinesq approximation has been employed and the mean
temperature 7 in a duct cross-section has been chosen as
the reference temperature for the linearization of the
equation of state ¢ = ¢(7'). The momentum and energy
balance equations have been written in a dimensionless
form. It has been shown that both the dimensionless
velocity u(x,y) and the dimensionless temperature #(x, y)
are two-dimensional fields which depend only on the
ratio Gr/Re, on the aspect ratio ¢ and on ¢, ¢, ¢3, ¢4.
The set of dimensionless equations has been solved nu-
merically, by means of a Galerkin finite element method
implemented by utilizing the software package FlexPDE.

In the special case of forced convection, the results
have been compared with those obtained by Spiga and
Morini (1996) and by Shah and London (1978). The
comparison has revealed a fair agreement between our
results and those obtained analytically for the friction
factor (Shah and London, 1978) and for the Nusselt
number (Spiga and Morini, 1996).

The effect of buoyancy has been studied, and the
values of the parameters f Re, Nu, K4 and K, have been
reported as functions of Gr/Re for different values of the
aspect ratio ¢. First, reference has been made to the H2
thermal boundary condition of kind 4. Then, for the
special case of a square duct, the other H2 boundary
conditions have been investigated. It has been shown
that, in each case, there exists a negative real number
(Gr/Re)' such that for Gr/Re < (Gr/Re)' the phenome-
non of flow reversal occurs. This is a well known effect
which arises for mixed convection in vertical or inclined
ducts, and implies the existence of a region within the

duct where the local fluid velocity is opposite to the
mean fluid flow.
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